Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions.
نویسندگان
چکیده
Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt conditions, wide pH range and serum or plasma containing media. The AuNPs also show strong resistance to competition from dithiothreitol (as high as 1.5 M). Moreover, the modified AuNPs demonstrate low cytotoxicity investigated by both MTT and LDH assays, and good hemocompatibility evaluated by hemolysis of human red blood cells. In addition, the intracellular fate of AuNPs was investigated by ICP-MS and TEM. It showed that the AuNPs are uptaken by cells in a concentration dependent manner, and they can escape from endosomes/lysosomes to cytosol and tend to accumulate around the nucleus after 24 h incubation but few of them are excreted out of the cells. Gold nanorods are also stabilized by this ligand, which demonstrates robust dispersion stability and excellent hemocompatibility. This kind of multidentate zwitterionic chitosan derivative could be widely used for stabilizing other inorganic nanoparticles, which will greatly improve their performance in a variety of bio-related applications.
منابع مشابه
In vitro biocompatibility of low and medium molecular weight chitosan–coated Fe3O4 nanoparticles
Objective(S): The chitosan - Fe3O4 core - shell nanoparticles were synthesized. The nanoparticles should be coated properly in the shape of core-shell, so that they remain hidden from the body's immune system after coating. Effects of different molecular weight in coating were investigated. Methods: Nanoparticles coated with low and ...
متن کاملSynthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications
The unique properties and applications of iron oxide and Au nanoparticles have motivated researchers to synthesize and optimize a combined nanocomposite containing both. By using various polymers such as chitosan, some of the problems of classic core-shell structures (such as reduced saturation magnetization and thick coating) have been overcome. In the present study, chitosan and one of its we...
متن کاملFunctional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications
As a biomaterial, chitosan has been widely used in tissue engineering, wound healing, drug delivery, and other biomedical applications. It can be formulated in a variety of forms, such as powder, film, sphere, gel, and fiber. These features make chitosan an almost ideal biomaterial in cell culture applications, and cell cultures arguably constitute the most practical way to evaluate biocompatib...
متن کاملGlucose Biosensor Based on Chitosan-Gold and Prussian Blue-Gold Nanoparticles
Amperometric glucose biosensors were constructed by codeposition of glucose oxidase (GOx) with chitosangold (chitosan-AuNP) on gold-Prussian Blue (Au-PB) nanoparticles modified glassy carbon electrodes (GCE). The high stability of the biosensors was achieved using electrochemically controllable in situ Au-PB film preparation following the film covering with GOx layer encrusted with chitosan-AuN...
متن کاملSynthesis and loading of nanocurcumin on iron magnetic nanoparticles modified with chitosan
Background: Curcuma longa generally known as turmeric includes curcuminoids and sesquiterpenoids as components, which are known to have antioxidative, anticarcinogenic, and anti-inflammatory activities. Iron, magnetite, and hematite as a micronutrient play an important role in physiological and chemical processes. Chitosan is a natural polymer derived from chitin and is recognized as versatile ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 5 9 شماره
صفحات -
تاریخ انتشار 2013